
Multi-fidelity Analysis for
Human-in-the-loop Search and

Tracking

Tomonari Furukawa

Final Report for a Project Funded by

Asian Office of Aerospace Research and Development

Computation Mechanics and Robotics Group

and

ARC Centre of Excellence for Autonomous Systems

School of Mechanical and Manufacturing Engineering

University of New South Wales

Australia

June, 2008

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
02 JUL 2008

2. REPORT TYPE
Final

3. DATES COVERED
 19-09-2007 to 19-03-2008

4. TITLE AND SUBTITLE
Multi-Fidelity Analysis for Human-in-the-Loop Search and Tracking

5a. CONTRACT NUMBER
FA48690714099

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Tomonari Furukawa

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of New South Wales,Univ of New South Wales,Sydney
NSW ,Australia,NA,2052

8. PERFORMING ORGANIZATION
REPORT NUMBER
N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
AOARD, UNIT 45002, APO, AP, 96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-074099

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The aim of this project is to achieve multi-fidelity analysis for the multi-objective control of a team of
unmanned aerial vehicles (UAVs) with humans in the loop of the estimation and control framework. The
successful participation of humans in the loop for dynamically changing environments depends heavily on
the reliability of data measured and information constructed by the UAVs. The multi-fidelity analysis
proposed in the project enables real-time adjustment for computationally heavy search and tracking
operations and further extracts quantities from the adjustment in the form of reliability.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

41

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Multi-fidelity Analysis for Human-in-the-loop

Search and Tracking

Tomonari Furukawa

Abstract

The aim of this project is to achieve multi-fidelity analysis for the multi-objective

control of a team of unmanned aerial vehicles (UAVs) with humans in the loop of

the estimation and control framework. The successful participation of humans in

the loop for dynamically changing environments depends heavily on the reliability of

data measured and information constructed by the UAVs. The multi-fidelity analysis

proposed in the project enables real-time adjustment for computationally heavy

search and tracking operations and further extracts quantities from the adjustment

in the form of reliability.

Due to the termination of the project in six months for its renewal at Virginia

Polytechnic Institute and State University, the aim has been scaled down to the real-

time adjustment for search and tracking using a Graphics Processing Unit (GPU).

The GPU, allowing grid-wise computation for image processing and analysis, is well

suited to accelerate recursive Bayesian estimation which also requires computation

in spatially discretized space for search and tracking. The GPU-based search and

tracking system was initially implemented on a platform-in-the-loop simulator to

enable real-time cooperative search and tracking in a virtual environment. The

real-time capability of the system was then demonstrated with an unmanned ground

vehicle (UGV) for its search operations.

Acknowledgements

This work is supported by the US Asian Office of Aerospace Research and Devel-

opment (AOARD). We would like to express our sincere gratitude to Drs. William

Nace and Ken Goretta at AOARD. The appreciation also goes to ARC Centre of

Excellence for Autonomous Systems funded by the Australian Research Council

(ARC) and the New South Wales State Government and its Director, Prof. Hugh

F. Durrant-Whyte.

iii

List of Papers

The papers produced during the half a year period are listed below. Due to the

shortness of the period of the project, most of work produced remains unpublished.

The additional list describes journal papers to be written with the progress made up

to date, and approximately two conference papers will be published for the contents

of each journal paper.

Papers (January - June, 2008)

Journal papers

1. Chern Ferng Chung and Tomonari Furukawa, “Coordinated Pursuer Con-

trol Using Particle Filters for Autonomous Search-and-Capture, Journal of

Robotics and Autonomous Systems, in print.

2. Benjamin Lavis, Tomonari Furukawa and Hugh F. Durrant-Whyte, “Spatially

Adaptive Exploration for Autonomous Bayesian Search and Tracking,” Au-

tonomous Robots, 24, pp. 387-399, 2008.

3. Lin Chi Mak and Tomonari Furukawa, ”A Time-of-Arrival-Based Positioning

Technique With Non-Line-of-Sight Mitigation Using Low-Frequency Sound”,

Advanced Robotics, Vol. 22, no. 5, pp. 507-526, 2008.

4. Lin Chi Mak, Mark Whitty and Tomonari Furukawa, ”A localisation system

for an indoor rotary-wing MAV using blade mounted LEDs”, Sensor Review,

Emerald, Vol. 28, Issue 2, pp. 125-131, 2008.

iv

v

Conference papers

1. Benjamin Lavis and Tomonari Furukawa, “HyPE: Hybrid Particle-Element

Approach for Recursive Bayesian Searching-and-Tracking,” Robotic Systems

and Science, Zurich, Switzerland, June 25-28, 2008, 8 pages, in print.

2. Benjamin Lavis, Yasuyoshi Yokokohji and Tomonari Furukawa, “Estimation

and Control for Cooperative Autonomous Searching in Crowded Urban Emer-

gencies,” International Conference on Robotics and Automation, Pasadena,

CA, May 19-23, 2008, pp. 2831-2836, 2008.

3. Lin Chi Mak, et al., “Design and development of the Micro Aerial Vehicles

for Search, Tracking And Reconnaissance (MAVSTAR) for MAV08,” 1st US-

Asian demonstration and assessment of micro-aerial and unmanned ground

vehicle technology (MAV08), Agra, India, Mar. 10-15, 2008.

4. Jamie Kelly, Makoto Kumon, Benjamin Lavis and Tomonari Furukawa, “Real-

time Recursive Bayesian Estimation Using a Graphics Processing Unit and

its Application to Micro Aerial Vehicles,” 8th International Conference on

Cooperative Control and Optimization (CCO08), Gainesville, FL, January

30-February 2, 2008, Abstract only.

Papers to be Written with Progress up to Date

1. Journal Paper 1: Real-time Adjustment for Belief-driven Search and Tracking

Using Graphics Processing Unit.

2. Journal Paper 2: Multi-fidelity Analysis for Real-time Belief-driven Search

and Tracking.

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

2 Recursive Bayesian Estimation 3

2.1 Target and Sensor Platform Models 3

2.2 Recursive Bayesian Estimation . 4

2.3 Grid-based Method . 5

2.3.1 Representation of Target Space 6

2.3.2 Evaluation of Function and its Integral 8

3 Graphics Processor Unit 10

3.1 Real-Time Computational Limits . 10

3.2 Compute Unified Device Architecture 12

4 Implementation of Recursive Bayesian Estimation on GPU 17

4.1 Data Parallelization . 17

4.2 Parallelization of Recursive Bayesian Estimation 18

4.2.1 Update . 19

4.2.2 Prediction . 20

4.2.3 Estimated Computational Speedup 21

5 Experimental Results 23

5.1 Experimental Setup and Methodology 23

vi

Contents vii

5.2 Validation . 24

5.2.1 Test 1: Validation of parallelized recursive Bayesian estima-

tion with linear form . 24

5.2.2 Test 2: Validation of Target Motion Model 26

5.3 Computational Speedup by Parallelization 27

5.4 Parametric Studies in Real-time Performance 28

5.4.1 Search Space Grid Size . 28

5.4.2 Number of Sensor Platforms and Sensor Range 28

List of Figures

2.1 Grid-based method . 7

2.2 Function with grid-based method . 9

3.1 Central Processing Unit Architecture 11

3.2 Graphics Processing Unit Architecture 12

3.3 Thread and Grid Block Layout for NVidia GPU 14

3.4 Memory Architecture of an NVidia GPU 16

4.1 Number of floating point operations in prediction 21

4.2 Computational Speedup for Grid-based Representation 22

5.1 Flow Chart for Comparison of Linear and Parallel Algorithms 25

5.2 Mean Squared Error for Parallel Recursive Bayesian Estimation . . . 26

5.3 Parallel recursive Bayesian estimation 30

5.4 Iteration times and computational speedup 31

5.5 Computational speedup vs size of grid space 31

5.6 Iteration time vs grid size . 32

5.7 Real-time performance with multiple sensor platforms 32

viii

List of Tables

4.1 Computational requirement for grid-based method 22

5.1 Test computer system specifications 24

ix

Chapter 1

Introduction

The control objectives of a group of sensor platforms can be classified into search and

tracking depending on whether the target of concern can be detected or not. Whilst

search is performed when the target is not found, the sensor platform which found a

target tracks it to carry out desired tasks. Under the presence of uncertainties, it is

expected to formulate the search and tracking in a probabilistic manner by utilizing

a recursive Bayesian estimator.

Due to the difference in operation, recursive Bayesian estimators for search and

tracking however used different numerical techniques in the past. Techniques ef-

fective for the search operation include the grid-based method, the element-based

method and the Monte Carlo method. The strength of these methods for search

clearly lies in their capability of representing the entire search space, but the con-

sideration of the entire search space rendered the methods uninteresting to tracking

where only the target PDF with a high, sharp peak, described only in a small region

around the location of the found target, is concerned. The techniques suitable for

tracking, such as the extended Kalman Filter (EKF), the sequential Monte Carlo

(SMC) methods also known as the particle filter methods, the sequential Quasi-

Monte Carlo (SQMC) methods and their variants, result from their computational

efficiency in describing the PDF of the observable target. As a result, the areas

considered in the target space are limited to those where targets are observable, and

the past work treated search and tracking independently.

In this report, real-time adjustment using a Graphics Processing Unit (GPU)

1

Chapter 1. Introduction 2

has been presented for the recursive Bayesian search and tracking. The numerical

technique adopted for search and tracking is the grid-based method, which shows

its superiority in the representation of search space and inferiority in computation

time, particularly for the tracking operation. By analyzing its grid-wise computa-

tional process, its implementation on a GPU allows real-time recursive Bayesian

estimation, thereby removing the bottleneck of the grid-based method.

The report is organized as follows. The following chapter reviews the recur-

sive Bayesian estimation and the grid-based method whilst Chapter 3 refers to the

fundamentals of GPUs. Chapter 4 presents the proposed implementation of the

recursive Bayesian estimation on the GPU, and experimental results demonstrating

its effectiveness are dealt with in Chapter 5.

Chapter 2

Recursive Bayesian Estimation

This chapter describes the fundamentals of the recursive Bayesian estimation when

a single autonomous vehicle is concerned with a single target.

2.1 Target and Sensor Platform Models

Consider a target t of concern, the motion of which is discretely given by

xt
k+1 = f t

(
xt

k,u
t
k,w

t
k

)
(2.1)

where xt
k ∈ X t is the state of the target at time step k, ut

k ∈ U t is the set of

control inputs of the target, and wt
k ∈ W t is the “system noise” of the target.

In the aforementioned marine SAR scenario, the target state describes the two-

dimensional position of the life raft, whilst the target control inputs and the system

noise correspond to the wind and current acting in two-dimensional space and their

uncertainties or disturbances, respectively.

In order for the formulation of the SAT problem, this moving target is searched

and tracked by a vehicle s, the global state of which is assumed to be accurately

known by the use of sensors such as GPS, a compass and an IMU. The motion model

is thus given by

xs
k+1 = f s (xs

k,u
s
k) (2.2)

where xs
k ∈ X s and us

k ∈ U s represent the state and control input of the vehicle,

3

2.2. Recursive Bayesian Estimation 4

respectively. The vehicle also carries a sensor with an “observable region” as its

physical limitation to observe a target. The observable region is determined not

only by the properties of the sensor such as signal intensity but also the properties

of the target such as the reflectivity. Defining the probability of detection 0 ≤

Pd (xt
k|xs

k) ≤ 1 from these factors as a reliability measure for detecting the target t,

the observable region can be expressed as

sX t
o =

{
xt

k|0 < Pd

(
xt

k|xs
k

)
≤ 1

}
Accordingly, the target state observed from the sensor platform, szt

k ∈ X t, is given

by

szt
k =

 sht (xt
k,x

s
k,

svt
k) xt

k ∈ sX t
o

ø xt
k /∈ sX t

o

(2.3)

where svt
k represents the observation noise, and ø represents an “empty element”,

indicating that the observation contained no information on the target or that the

target is unobservable when it is not within the observable region. Note here that

the terms “sensor platform” and ‘vehicle’ are used interchangeably in this report as

the vehicle is assumed to carry only one sensor for observation.

2.2 Recursive Bayesian Estimation

Recursive Bayesian estimation forms a basis to the estimation of nonlinear non-

Gaussian stochastic models. Let a sequence of states of the sensor platform s and a

sequence of observations by the sensor platform from time step 1 to time step k be

x̃s
1:k ≡ {x̃s

i |∀i ∈ {1, ..., k}} and sz̃1:k ≡ {sz̃i|∀i ∈ {1, ..., k}}, respectively. Note here

that (̃·) represents an instance of variable (·). Given a prior density of the target

p (x̃t
0) and sequences of states x̃s

1:k and observations sz̃1:k, the PDF of the target

at any time step k, p (xt
k|sz̃1:k, x̃

s
1:k), can be estimated recursively through the two

stage equations, update and prediction:

1. Update: The update equation computes the posterior density p (xt
k|sz̃1:k, x̃

s
1:k)

given the corresponding state estimated with the observations up to the pre-

2.3. Grid-based Method 5

vious time step p (xt
k|sz̃1:k−1, x̃

s
1:k) and a new observation sz̃k. The equation is

derived by applying formulae for marginal distribution and conditional inde-

pendence and given by

p
(
xt

k|sz̃1:k, x̃
s
1:k

)
=

l (xt
k|sz̃k, x̃

s
k) p (xt

k|sz̃1:k−1, x̃
s
1:k)∫

X t l (xt
k|sz̃k, x̃s

k) p (xt
k|sz̃1:k−1, x̃s

1:k) dxt
k−1

, (2.4)

where l (xt
k|sz̃k, x̃

s
k) represents the likelihood of xt

k given sz̃k and x̃s
k. Notice

that the update at k = 1 is carried out by letting p (xt
k|sz̃1:k−1, x̃

s
1:k) = p (x̃t

0).

2. Prediction: The prediction step computes the PDF of the next state p
(
xt

k+1|sz̃1:k, x̃
s
1:k

)
from the PDF in the current time step p (xt

k|sz̃1:k, x̃
s
1:k). The prediction is car-

ried out by Chapman-Kolmogorov equation, which is better known as Total

Probability Theorem:

p
(
xt

k+1|sz̃1:k, x̃
s
1:k

)
=

∫
X t

p
(
xt

k+1|xt
k

)
p
(
xt

k|sz̃1:k, x̃
s
1:k

)
dxt

k, (2.5)

where p
(
xt

k+1|xt
k

)
is a probabilistic Markov motion model defined by Eq. (2.1)

which maps the probability of transition from the current state xt
k to the next

state xt
k+1.

In their numerical implementation, the update and prediction processes, as de-

scribed in Equations (2.4) and (2.5), essentially require the evaluation of a function

at an arbitrary point in the target space X t, f(xt), and the integration of a function

over the target space, I =
∫
X t f(xt)dxt. As described in Sec. 1, the search tech-

niques achieve this by spreading nodes for integration over the target space whereas

the tracking techniques only consider the subspace where a non-zero value of the

target PDF appears.

2.3 Grid-based Method

Since the majority of the numerical techniques for recursive Bayesian estimation

compute on the nodal discrete basis, the superiority of the proposed element-based

method in continuous representation to the techniques cannot be easily discussed in

2.3. Grid-based Method 6

a quantitative manner. As the grid-based method can represent the target space con-

tinuously by considering grid cells rather than grid points, this chapter will present

the continuous formulation of the grid-based method, which describes the target

PDF in terms of the step function rather than the Dirac delta functions [?], and

address the limitations of the grid-based method.

2.3.1 Representation of Target Space

Figure 2.1 illustrates the process that numerically derives the approximate target

space using the grid-based method when a two-dimensional circular target space is

concerned. The numerical approximation involves the following three steps:

1. Creation of a rectangular space which covers the entire target space,

2. Representation of the rectangular space as a grid,

3. Selection of grid cells that represent the target space.

In order to avoid the complication of formulations, let the target space be rep-

resented two-dimensionally as xt = [xt, yt]
> ∈ X t. The creation of a rectangular

space X r that covers the target space is achieved by firstly defining the minimum

and maximum values of the target space

xt
min = min

{
xt

}
, xt

max = max
{
xt

}
yt

min = min
{
yt

}
, yt

max = max
{
yt

}
and then creating a rectangular space as

X r ≡
{
x|∀x ∈ [xt

min, x
t
max),∀y ∈ [yt

min, y
t
max)

}
⊇ X t

where x = [x, y]>. The grid space is further introduced by discretizing the rectan-

gular space by nx and ny. In order to do so, the dimensions of a grid cell are defined

as

∆xr =
(xt

max − xt
min)

nx

, ∆yr =
(yt

max − yt
min)

ny

. (2.6)

2.3. Grid-based Method 7

(a) Target space (b) Creation of a rect-
angular space

(c) Creation of a grid (d) Selection of grid cells

Fig. 2.1: Grid-based method

2.3. Grid-based Method 8

This results in introducing the center of each grid cell as

x̄r
i,j =

[
(i− 0.5)∆xr + xt

min, (j − 0.5)∆yr + yt
min

]>
,

∀i ∈ {1, ..., nx} ,∀j ∈ {1, ..., ny} , (2.7)

and defining each grid cell as

X r
i,j =

{
x| |x− x̄r

i | <
1

2
∆xr,

∣∣y − ȳr
j

∣∣ <
1

2
∆yr

}
.

Note that ∪nxx
i=1 ∪

nyy

j=1 X r
i,j = X r and ∩nxx

i=1 ∩
nyy

j=1 X r
i,j = Ø. The selection of grid cells

that represent the target space can be performed in various ways. One easy way is

to select a grid cell if its center is located in the target space:

X r
i,j ⊂ X t if x̄r

i,j ∈ X t .

The resulting configuration of the target space in the figure, with the rectangular

space partitioned by nx = ny = 10, depicts the coarse representation of the boundary

of the target space, which is one of the deficiencies of the grid-based method.

2.3.2 Evaluation of Function and its Integral

Let the approximate target space derived by the processes described in the last

section be

X t ≈ X g ≡
{
X g

1 , ...,X g
ng

}
with the center of each grid cell being x̄g

i , ∀i ∈ {1, ..., ng}, where ng is the number of

grid cells approximating the target space. Having the approximate function defined

over the target space be f g : X g → R, the value of the function given a point in the

target space, xt = x̃t ∈ X g, can be approximately computed as

f(x̃t) ≈ f g(x̃t) ≡
ng∑
i=1

f(x̄g
i)δi

(
x̃t − x̄g

i

)
, (2.8)

2.3. Grid-based Method 9

where the indicator function δi(·) is defined as

δi

(
xt − x̄g

i

)
=

 1 xt ∈ X g
i

0 Otherwise
. (2.9)

Using the representation of the approximate function, the integral of the function is

given by

I =

∫
X t

f(xt)dxt

≈
∫
X g

f g(xt)dxt = ∆xr∆yr

ng∑
i=1

f(x̄g
i). (2.10)

Figures 2.2(a) and (b) show Gaussian distributions when the circular target

space is partitioned by 10 and 20, respectively. In addition to the target space, the

distribution is also represented coarsely if the number of partitions is small.

(a) 10 partitions (b) 20 partitions

Fig. 2.2: Function with grid-based method

Chapter 3

Graphics Processor Unit

The GPU is a powerful tool for programmers with a great deal of potential for

solving the problems faced by scientists and engineers who are attempting to achieve

Real-Time performance in their systems. The chapter first presents the advantages

of using a workhorse GPU for parallel computation by examining recent trends in

computer hardware. The chapter then describes the architecture and operation of

NVidia GPUs and how they can be used for general purpose computing by referring

to their use with recursive Bayesian estimation.

3.1 Real-Time Computational Limits

The improvement in computational power of GPUs in the past 5 years has far

outstripped that of CPU based systems. The operational demands placed on GPUs

by the gaming industry have dictated a different architecture to CPUs based on the

use of multiple processors to perform simultaneous calculations of multiple results

in a single operation. It is important to understand these differences so that parallel

algorithms can be developed which are suitable for implementation using it.

A typical CPU based system is shown in Figure 3.1. It consists of a controller,

Arithmatic Logic Units (ALUs) to compute the most basic operations on input

data, cache memory which stores immediate inputs and outputs from the ALUs,

and Dynamically Randomly Allocated Memory (DRAM) which holds the input and

output data for the CPU operation. A typical CPU operation is as follows:

10

3.1. Real-Time Computational Limits 11

1. CPU loads entire input data variable into DRAM;

2. CPU loads small subset of input data into cache which is required for first

part of operation;

3. ALU performs required algorithm on input data in cache and places resulting

data back in cache;

4. CPU outputs result from cache to DRAM;

5. CPU loads new piece of data from DRAM to cache and repeats until entire

operation is complete; and

6. CPU outputs entire output data variable from DRAM.

Fig. 3.1: Central Processing Unit Architecture

This linear structure basically iterates the required operation over the entire set of

input data one piece at a time which severely limits the efficiency of the computation.

In a GPU based operation, instead of having a single processor operation, there are

multiple ALUs each with their own control and cache as shown in Figure 3.1 , which

performs the same operation as above. The operation is now performed on batches

of data as opposed to one at a time and can lead to dramatic reductions in the time

taken to complete each operation.

The GPU architecture results in a speeding up of the arithmetic part of the

operation, at the cost of increase in memory operations as more data and control

3.2. Compute Unified Device Architecture 12

Fig. 3.2: Graphics Processing Unit Architecture

information needs to be sent every iteration. Thus operations which lend themselves

to such architecture have a high arithmetic intensity, or ratio of arithmetic operations

to memory operations. The most efficient algorithms for this are the Single Input

Multiple Data (SIMD) operations, as only a single control needs to be sent to all of

the controllers for the ALUs and each ALU simply performs the operation on the

piece of data input to it.

3.2 Compute Unified Device Architecture

The most recent GPUs produced by NVidia are designed to operate with a C based

library called Compute Unified Device Architecture (CUDA). This very basically

consists of C based functions which allow a CPU to control general computational

operations on the GPU. Such operations which must be controlled included:

• The creation of variable and memory locations on the GPU to store input and

output data;

• The transfer of input data to the GPU;

• The general processing of input data by the GPU as required by the algorithms

3.2. Compute Unified Device Architecture 13

being applied; and

• The transfer of output data back from the GPU.

These functions can be included in any C based code so that standard programs can

utilize the GPU as necessary to speed up computation.

NVidia GPUs, such as the G80 chipset GPUs, when programmed using the

CUDA functions are in essence highly multithreaded coprocessors. That is, the

GPU is a computing device which may be controlled by functions on the CPU to

perform operations on data in parallel. The program which performs a portion of

the algorithm a number of times on different pieces of data is known as a kernel and

is downloaded to the GPU prior to or during run-time.

Figure 3.2 illustrates the execution of the kernel on the GPU using batches of

“threads”, each of which will compute a single operation on one part of the input

data. The threads are characterized and processed as follows:

• Threads are grouped together into blocks, in which each thread cooperates

to perform the required computation, sharing memory as necessary to ensure

efficient and rapid operation;

• In each thread block, the threads are identified by its thread ID which refers

to its position inside the block;

• The blocks may be created in a two-dimensional fashion with a width and

height and total number of threads;

• The number of threads each block can contain is limited by the memory ar-

chitecture of the individual GPU. Batching groups of blocks of the same size

together can be used to create larger size kernels for performing larger opera-

tions;

• Synchronization of the threads operation can only be performed within blocks,

which is necessary to ensure that all of the operations requested of the threads

have been performed before the results are output from the GPU

3.2. Compute Unified Device Architecture 14

• Blocks have no ability to share memory or synchronize information and may

be run either sequentially or in parallel by the GPU; and

• Blocks have their own identification number in the same way that threads do.

Fig. 3.3: Thread and Grid Block Layout for NVidia GPU

Figure 3.2 shows the memory architecture of the G80 chipset NVidia GPUs which

consists of the following memory locations:

• Global, constant and texture memory spaces which are part of each grid for

the kernel and are accessible by the threads (global memory can be read and

written two, constant and texture memory can only be written);

• Local memory internal to each block;

• Registers for each thread to use; and

• Shared memory which all threads within each block can read and write to.

The multiprocessors on the GPU are able to schedule and execute a batch of blocks,

in a series. If the shared memory allocated to each block can reside in the on-

chip shared memory, the memory access speed is improved dramatically. Active or

executing batches of blocks in a multi-processor are divided into groups of threads

3.2. Compute Unified Device Architecture 15

called Warps of the same number of threads. Warps of threads are periodically

switched by a thread scheduler to maximize the processors computational efficiency.

As has been stated above, the CUDA programming library allows programmers

to complete access to the operation of the NVidia GPU, which includes allocation

of variables in the memory locations shown above. The library itself consists of two

parts:

1. Extensions to the C language itself to allow the programmer to target specific

portions of the code to execution on the GPU rather than the CPU; and

2. Three sections of run-time library:

• Host component to perform normal operation on the CPU;

• Device component to run required operations on the GPU; and

• Common component to allow for data transfer and control by the CPU

of the GPU.

This allows a general user to frame their algorithms in such a manner that they may

be computed as a separate function on the GPU and passed back for use by the C

program on the CPU, which is how it is to be used for recursive Bayesian estimation.

A proper understanding of this architecture is essential for using the NVidia GPU

effectively and efficiently so that gains in computation time may be made.

3.2. Compute Unified Device Architecture 16

Fig. 3.4: Memory Architecture of an NVidia GPU

Chapter 4

Implementation of Recursive

Bayesian Estimation on GPU

Having the recursive processes carried out on a grid basis, the recursive Bayesian

estimation is well suited to the processing on the GPU. This chapter presents the

implementation of recursive Bayesian estimation on a GPU and its estimation for

maximum improvement in performance. Effort was made to understand how input

parameters such as the search space size effect the computational improvement so

that this conclusion is valid for typical search space sizes.

4.1 Data Parallelization

The approach chosen to improve the computational efficiency of the recursive Bayesian

estimation is the form of parallelization known as data parallelization. Data paral-

lelization is the process of converting processes which operate on each piece of data

individually in a sequence, to one that operates on groups of data at once, which

can result in a dramatic reduction in computation time. The recursive Bayesian

estimation, described in Chapter 2, has multiple processes which lend themselves to

computational speed-up by parallelization. However, their numerical implementa-

tion should be analyzed to determine which of these are likely to produce meaningful

improvements to the computational speed.

The potential computational speedup produced by parallelizing operations in

17

4.2. Parallelization of Recursive Bayesian Estimation 18

a process can be estimated using Amdahl’s law, which states that the maximum

speedup achievable by parallelization is:

S =
tp
to

=
1

(1− P) + P
N

(4.1)

where S is the computational speedup, tp is the iteration time for the parallelized

algorithm, to is the iteration time for the original algorithm, P is the proportion

of the process which is parallelizable and N is the number of parallel processors

available to perform the parallelization. This formula is the theoretical maximum

of the computational speedup and does not take into account the bottlenecking

effect of communications between large numbers of threads; however it gives a good

estimate of the effectiveness of parallelizing each operation in the recursive Bayesian

estimation.

To enable this estimation, each operation in the recursive Bayesian estimation

described in Chapter 2 must be examined to estimate the number of floating point

operations. These results can be used to estimate the proportion of the algorithm

that can be parallelized and allow the maximum potential speedup to be calculated

using Equation (4.1).

4.2 Parallelization of Recursive Bayesian Estima-

tion

As was described in Chapter 2, the grid-based representation of the target space

involved describing the target space as a set of grid cells. The probability density

function for the grid-based representation is a matrix of probability values each of

which represents the probability of locating the target inside the corresponding grid

cell. There is a significant advantage in representing the target space in this man-

ner when formulating parallel algorithms for recursive Bayesian estimation, as the

organization of the data itself is directly related to the physical location of the grid

cells in the target space. This means very low overhead due to memory operations

to determine the physical relationships between grid cells when performing the pre-

4.2. Parallelization of Recursive Bayesian Estimation 19

diction step, which is one of the major factors in the effectiveness of parallelization.

If threads operating on different pieces of data have to perform multiple memory

operations to determine which piece of data to operate on, the computational im-

provements due to parallelization are significantly reduced. Both the update and

the prediction processes have been examined in this section to determine the effec-

tiveness of implementing them in parallel on the NVidia GPU.

4.2.1 Update

The update operation requires the computation of Equation 2.4 in a discretized space

with grid cells. Let the probability density function of the grid cell [i, j] at the kth

iteration be pi,j
xt

k
(·). Given the prior probability density function pi,j

xt
k
(sz̃1:k−1, x̃

s
1:k)

and the observation likelihood li,j
xt

k
(sz̃k, x̃

s
k), the probability density function of the

grid cell [i, j] can be updated as

pi,j
xt

k
(sz̃1:k, x̃

s
1:k) =

qi,j
xt

k
(sz̃1:k, x̃

s
1:k)

∆xr∆yr

∑nx

α=1

∑ny

β=1 qα,β
xt

k
(sz̃1:k, x̃s

1:k)
,

∀α ∈ {1, ..., nx} ,∀β ∈ {1, ..., ny} , (4.2)

where

qi,j
xt

k
(sz̃1:k, x̃

s
1:k) = li,j

xt
k
(sz̃k, x̃

s
k) pi,j

xt
k
(sz̃1:k−1, x̃

s
1:k) ,∀i ∈ {1, ..., nx} ,∀j ∈ {1, ..., ny} .(4.3)

In the numerical implementation, the update operation can be broken down into

three steps:

1. Calculate qi,j
xt

k
(sz̃1:k, x̃

s
1:k) by multiplying the predicted probability density func-

tion pi,j
xt

k
(sz̃1:k−1, x̃

s
1:k) by the observation likelihood li,j

xt
k
(sz̃k, x̃

s
k);

2. Sum
∑nx

α=1

∑ny

β=1 qα,β
xt

k
(sz̃1:k, x̃

s
1:k); and

3. Calculate pi,j
xt

k
(sz̃1:k, x̃

s
1:k) by dividing qi,j

xt
k
(sz̃1:k, x̃

s
1:k) by

∑nx

α=1

∑ny

β=1 qα,β
xt

k
(sz̃1:k, x̃

s
1:k).

Out of the three steps, Steps 1 and 3 are the operations whose calculations can

be conducted independently for every grid cell. Step 1 requires a multiplication

4.2. Parallelization of Recursive Bayesian Estimation 20

operation for each grid cell in the target space, thus for the search space with nxny

cells or less, there are nxny floating point operations per iteration at most. This

number could be much lower as there may be large parts of the search space where

either pi,j
xt

k
(sz̃1:k−1, x̃

s
1:k) or li,j

xt
k
(sz̃k, x̃

s
k) is zero. However for these calculations, the

worst case scenario will be used as this is the most conservative estimate of the

potential speedup. Step 2 requires additional floating operations through division,

which totals nxny at most. Thus, the maximum number of floating point operations

is estimated as 2nxny.

4.2.2 Prediction

The prediction operation requires the numerical evaluation of the Chapman-Kolmogorov

equation described in Equation (2.5). Given the updated PDF pij
xt

k
(sz̃1:k−1, x̃

s
1:k) as

well as the Malkov motion model pij
xt

k+1|x
t
k

constructed in the matrix form as the

convolution kernel, the PDF can be predicted as

pi,j

xt+1
k

(sz̃1:k, x̃
s
1:k) = pi,j

xt
k
(sz̃1:k, x̃

s
1:k)⊗ pi,j

xt
k+1|x

t
k
,

=
I∑

α=0

J∑
β=0

pα,β
xt

k+1|x
t
k
pi−α,j−β
xt

k
(sz̃1:k, x̃

s
1:k) ,

∀i ∈ {1, ..., nx} ,∀j ∈ {1, ..., ny} , (4.4)

where ⊗ indicates the convolution of the updated PDF with the Malkov motion

model. The equation first shows that the prediction operation at each grid cell

can be conducted independently similarly to the update. However, it is also shown

that the computation time for prediction is largely dominated by the size of the

convolution kernel. Reducing the size will contribute to the real-time operation.

However, the convolution kernel must be able to capture the motion of the target,

so there will be a limitation in operational speed unless accuracy is sacrificed.

Figure 4.2.2 shows how the number of prediction steps varies with kernel radii

and grid size where the kernel radius is defined as the number of grid cells the ker-

nel matrix extends from the center cell to the outer row or column, not including

the center cell itself. For a suitable kernel radius rk, the number of multiplications

4.2. Parallelization of Recursive Bayesian Estimation 21

required to calculate each grid cell is (2rk + 1)2. For each grid cell, these multi-

plications are summed together, and thus there are a further (2rk + 1)2 floating

point operations per cell. In total, the number of floating point operations in the

Prediction step is ng(2(2rk + 1)2).

Fig. 4.1: Number of floating point operations in prediction

The figure shows clearly the exponential increase in operations with kernel radii.

There are also other factors, which will determine the kernel size in the grid-based

representation, including the allowable memory size and the transfer rates between

different processors and memory locations.

4.2.3 Estimated Computational Speedup

Table 4.1 summarizes the approximate number of floating point operations in each

major operation of the recursive Bayesian estimation. For a given number of grid

cells, kernel radius and number of parallel processors available on the GPU the

maximum attainable speedup may now be estimated with Equation 4.1 which has

been plotted in Figure 4.2.3. Note that the number of grid cells is a factor of each

of the total number of floating point operations in these processes, thus the speedup

which calculates the proportion of time spent in each process, will be theoretically

4.2. Parallelization of Recursive Bayesian Estimation 22

independent of grid size. For example, for a grid with 1,000,000 cells, a kernel radius

of 8 and using an NVidia G80 chipset GPU with 32 coprocessors, the maximum

speedup attainable is approximately 27.58 for the prediction and 1.00 for the update

step.

Table 4.1: Computational requirement for grid-based method

Operation Number of floating point operations
Update 3ng

Prediction ng

{
2 (2rk + 1)2}

Fig. 4.2: Computational Speedup for Grid-based Representation

When computed linearly using a CPU, the computational time required for an

iteration of recursive Bayesian estimation at 4740 grid cells was 1.27 seconds, which

would mean that, by parallelizing the prediction step alone, the iteration time could

be reduced to approximately 0.046 seconds with a 96.4% reduction in computation

time. Although this is a theoretical limit, the parallelization of the prediction step

with the grid-based method has very low overhead due to memory access issues.

This is because the data is stored coherently in a matrix in the grid-based method,

which means that the actual improvement in computation time should be close to

this estimated limit.

Chapter 5

Experimental Results

This chapter presents results of a series of qualitative and quantitative tests carried

out to investigate real-time capability of the system implementing the proposed

recursive Bayesian estimation. The tests described below have been performed using

problem parameters specified in the tables for each section. For the validation of the

system operation and testing of its computational efficiency, simple internal inputs

and outputs are used. The computational speeds measured for the GPU based

parallel form of the recursive Bayesian estimation have been compared with that

of the linear form to measure the speedup due to parallelization of the prediction

step. This result is to be compared with the estimations made in Chapter 4 of the

maximum improvement in computational time. Following these tests are two tests

which demonstrate the system operation with external inputs and outputs, which

include both simulations and real hardware. These tests demonstrate the efficacy of

the developed system in real-time practical environments.

5.1 Experimental Setup and Methodology

The experimental setup used in the following tests is a recursive Bayesian estimation

system in a Matlab environment which utilizes an NVidia GPU to achieve real-time

performance. The speeds of GPUs have been increasing at almost four times the rate

of that of CPUs. In order to demonstrate the computational speed improvements

achieved using parallel algorithms on a GPU, it must be compared against a linear

23

5.2. Validation 24

algorithm running on a CPU.

The setup specifications which have been chosen is shown in Table 5.1. To

prevent biasing of the results to either the CPU or GPU based implementation, the

chosen CPU and GPU needs to be of equivalent standard in memory and speed,

and both need to be current up to date versions with correctly installed drivers and

clean installs of the required programs.

Table 5.1: Test computer system specifications
Processor Intel Core2Duo, 2.4GHz
Memory 2.0GB RAM

Operating system Windows XP Pro, Service Pack 2
GPU NVidia 8800GTS, 640MB onboard RAM, stream processors

Matlab R2007b with nvmex installed

The CPU and GPU chosen here were both top of the range units at the time of

purchase. For the purposes of this project, these were chosen as benchmarks and

are representative of current trends in CPU and GPU technology. The NVidia 8800

GTS supports CUDA version 1.1 which has the required Matlab compiler installed

so that MEX files in Matlab may control the GPU. The GPU features a core clock

speed of 500MHz, 640MB of onboard Ram and a significant memory bandwidth of

64GB/s. It has the CUDA functionality installed for use with C based MEX files

through the Matlab 2007b interface.

5.2 Validation

5.2.1 Test 1: Validation of parallelized recursive Bayesian

estimation with linear form

Test 1 was aimed at validating the parallelized form of recursive Bayesian estima-

tion by comparing it with results from the linear form which were also computed

using Matlab. Before the performance of the real-time recursive Bayesian estimation

system can be studied, the underlying parallelized form of the recursive Bayesian

estimation needs to be validated to ensure fidelity with the original form of the

algorithm.

5.2. Validation 25

The target grid size must also be input to define the problem completely which

is to be varied to examine how this affects the coherence between the linear and

parallel forms of recursive Bayesian estimation. Each of these forms was iterated for

a range of different grid sizes. As this process is iterative, any errors in an iteration

of the parallel algorithm will cause a rapid drift between the probability density

functions of the two different methods. In order to make meaningful comparisons

between them the probability density function each method uses at the start of each

iteration must be the same for both forms. The linear algorithm will always be

taken to be the correct one at the beginning of each time step and both algorithms

will be applied to it. This process is illustrated in the flow chart in Figure 5.2.1.

Fig. 5.1: Flow Chart for Comparison of Linear and Parallel Algorithms

The results for the mean squared error are shown in Figure 5.2.1. These indicate

that there is a small random error between the two algorithms, with a mean value

of 1.0 x 10-6. This is well within the inherent noise of the models being used in the

iteration, and is of the correct order of magnitude to suggest that it is due to the

use of single precision floating point operations on the GPU based convolution as

opposed to the double precision floating point operations natively used by Matlab.

5.2. Validation 26

Fig. 5.2: Mean Squared Error for Parallel Recursive Bayesian Estimation

5.2.2 Test 2: Validation of Target Motion Model

The accuracy of the recursive Bayesian estimation was examined to determine the

parameters required for its real-time computation. The size of this convolution

kernel will affect both the accuracy of the representation of the targets motion as

well as the real-time performance of the system itself. Realistic limits on the size of

the convolution kernel need to be established to ensure that this accuracy is within

the noise of the system to be implemented. In this test, the velocity characteristics

of the motion model of the target were varied as well as the kernel size used to

represent them.

Figure 5.3 shows the results of a quantitative analysis of the ability of the parallel

form of the recursive Bayesian estimation in tests performed at a variety of different

grid sizes and convolution kernel sizes with different input target motions models.

In each test, the system was initialized and was allowed to iterate using the parallel

recursive Bayesian estimation. The PDF output at the end of each time step was

analyzed by calculating the weighted mean position of the peak.

The results well show that the relative error is very small (less than 1%) across

grid sizes from 10,000 to 1,000,000 grid cells when a convolution kernel is used and

appropriate velocities are used. However the error becomes very large if a smaller

convolution is used and the targets velocity is quite large. Note that as the number of

5.3. Computational Speedup by Parallelization 27

grid cells increase to above 1,000,000 the convolution kernels become less accurate

at representing the target motion model as the number of grid cells between the

center of the kernel and the peak in the kernel becomes larger. If a kernel radius

of 32 grid cells or greater is used and the grid size is between 10,000 and 1,000,000

cells the error for target motions up to 10 m/s is less than 2% which is well within

the noise included in the target motion model.

5.3 Computational Speedup by Parallelization

In Chapter 4, the method of data parallelization was proposed in which the PDF at

each cell in the grid-based representation can be computed in parallel, independently

of the other grid cells and that as a result, a speedup in the computation time of

the algorithm could be achieved. The required measurements of the iteration times

for the linear and parallelized forms of the recursive Bayesian estimation were taken

at different kernel radii which are shown in the first plot of Figure 5.3 whereas the

computational speedup for the experimental iteration times is shown along with the

estimation of the maximum speedup in the second plot.

The resulting improvement in the iteration rate for the recursive Bayesian esti-

mation appears to be quite close to the theoretical limit to which data parallelization

could achieve with the NVidia GPU used. On average across the range of convo-

lution kernels tested, the NVidia GPU implementation achieved over 95% of the

estimated maximum improvement in computational speed. This indicates that, as

predicted, the high arithmetic intensity of the grid-based prediction step has resulted

in the considerable improvement, and that the additional overhead due to memory

access and idle threads created for coalesced data reads was small enough to not

affect the result significantly.

The computational speedup should be independent of the number of grid cells

in the search space as predicted in Chapter 4. To investigate the validity of this

conclusion, the test was repeated at different grid sizes. The results shown in Figure

5.3 support the conclusion that the speedup achieved at different kernel radii is

independent of the number of grid cells used. The figure also shows that the speedup

5.4. Parametric Studies in Real-time Performance 28

achieved for different kernel radii is above 95% of the estimated value.

5.4 Parametric Studies in Real-time Performance

The objective of this project is to develop a technique of performing recursive

Bayesian estimation at an appropriate rate to be considered real-time so that it

may be utilizable in real search and tracking operations and simulations involving

other hardware and software systems. Parametric studies were used to specify the

real-time performance of the recursive Bayesian estimation system so that users

wishing to use the system can determine how the system will operate with their

existing hardware and they can select the appropriate input parameters and scaling

for their application. How the system performance scales with parameters such as

the number of sensor platforms, search space size, prediction size and number of

targets is very important for integration of this system with others.

5.4.1 Search Space Grid Size

One of the most important parameter in determining the real-time performance of

the system is the size of the grid space itself. As the number of grid cells increases,

the number of floating point and memory operations, and in turn the iteration time,

increases linearly. The iteration time for the real-time recursive Bayesian estimation

system was measured at different sizes of grid spaces and the results are shown in

Figure 5.4.1. The system shows reasonable real-time performance over this range of

grid cells. Although the iteration time increases linearly with total number of grid

cells, even at the largest grid size tested, 1,000,000, the iteration time is in the order

of 0.1 seconds.

5.4.2 Number of Sensor Platforms and Sensor Range

Previous tests of the real-time performance were carried out with a single sensor

platform with a typical search range, however the impact with which the character-

istics and quantities searching sensor platforms have on the real-time performance

5.4. Parametric Studies in Real-time Performance 29

should also be analyzed. Figure 5.4.2 shows the resulting iteration time of the real-

time recursive Bayesian estimation system for different numbers of sensor vehicles

and with sensor ranges of 5m, 50m and 100m. The results illustrate that the update

step in the recursive Bayesian estimation for small sensor ranges, the linear increase

in time taken for the update step is minimal as the number of sensors being input

increases. Even for sensor ranges as large as 100m, the iteration time for 100 such

sensor platforms is only 20% longer than for a single sensor platform. These results

indicate that the real-time Recursive Bayesian estimation system will still be able

to iterate at real-time speeds for problems involving large numbers of search craft

with considerable sensor ranges.

5.4. Parametric Studies in Real-time Performance 30

(a) 8 grid cells

(b) 32 grid cells

(c) 96 grid cells

Fig. 5.3: Parallel recursive Bayesian estimation

5.4. Parametric Studies in Real-time Performance 31

Fig. 5.4: Iteration times and computational speedup

Fig. 5.5: Computational speedup vs size of grid space

5.4. Parametric Studies in Real-time Performance 32

Fig. 5.6: Iteration time vs grid size

Fig. 5.7: Real-time performance with multiple sensor platforms

	Abstract
	Acknowledgements
	Introduction
	Recursive Bayesian Estimation
	Target and Sensor Platform Models
	Recursive Bayesian Estimation
	Grid-based Method
	Representation of Target Space
	Evaluation of Function and its Integral

	Graphics Processor Unit
	Real-Time Computational Limits
	Compute Unified Device Architecture

	Implementation of Recursive Bayesian Estimation on GPU
	Data Parallelization
	Parallelization of Recursive Bayesian Estimation
	Update
	Prediction
	Estimated Computational Speedup

	Experimental Results
	Experimental Setup and Methodology
	Validation
	Test 1: Validation of parallelized recursive Bayesian estimation with linear form
	Test 2: Validation of Target Motion Model

	Computational Speedup by Parallelization
	Parametric Studies in Real-time Performance
	Search Space Grid Size
	Number of Sensor Platforms and Sensor Range

